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An Algorithm for the Exact Reduction of a Matrix to 
Frobenius Form Using Modular Arithmetic. I 

By Jo Ann Howell* 

Abstract. This paper is in two parts. Part I contains a description of the Danilewski 
algorithm for reducing a matrix to Frobenius form using rational arithmetic. This algorithm 
is modified for use over the field of integers modulo p. The modified algorithm yields exact 
integral factors of the characteristic polynomial. A description of the single-modulus 
algorithm is given. Part II contains a description of the multiple-modulus algorithm. Since 
different moduli may yield different factorizations, an algorithm is given for determining 
which factorizations are not correct factorizations over the integers of the characteristic 
polynomial. 

A. THE DANILEWSKI METHOD 

1. Introduction. It is well known that the Danilewski method (Danilewski 
[1937]) for reducing a matrix A to Frobenius form 

(1.1) F F2 * 7 

F11 

where each diagonal block has the form 

o o o ~... 0 b' 0 

FO 0 0 ... 0 1 " 
(1.2) F= 0 0 i - 

0 1 0 *.. 0 bri-2 

L0 0 0 ... 1 bt j 
is numerically unstable (Frank [1958]). Several attempts have been made to reduce 
the inaccuracies by using multiple-precision arithmetic and pivoting for size (Chartres 
[1964]), (Hansen [1963]). These variations yield a Frobenius form much more accu- 
rately than previously reported. However, it has been shown that because of the 
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ill-condition of the Frobenius form of a matrix, the Danilewski method and its 
variations usually prove unsatisfactory for determining eigenvalues (Wilkinson [1965, 
pp. 405-41 1]). Even small errors in the diagonal blocks, F., may lead to catastrophic 
errors in the eigenvalues. 

Owing to the fact that a Frobenius form* * of a matrix does give us the charac- 
teristic polynomial (or a factorization of it over the integers) and some information 
on the derogatory nature of the matrix, this condensed form is still of some interest 
to us. For matrices arising from damped mechanical or electrical systems it is common 
for the Frobenius form to be well-conditioned (Wilkinson [1965, p. 482]). 

It is for these reasons that we describe here a modification of the Danilewski 
method with which we can reduce a matrix to Frobenius form exactly, that is, compute 
the F. exactly without the use of multiple-precision arithmetic or pivoting for size. 
This algorithm is described briefly by Slotnick [1963, pp. 4-42-4-46]. Since this 
modification uses modular (or residue) arithmetic, it is applicable only to integral 
matrices. This restriction is not serious, however, since fixed-word-length computers 
store only rational numbers which can be scaled to integer form. We observe that if 
the Frobenius form of the matrix A is 

FA =I 0 0 Xn1, 

O 1 0 .. * Xn-, 

_0 0 0 ...1 X1 

then the Frobenius form of the scaled matrix k.A is given by 

0 0 0 ... 0 k x,, 

FkA = 1 0 0 

0 1 0 ... 0 kXn-2x_. 

.0 . . ... I kx 

Hence, given FkA and k, we can compute FA. 

The residue arithmetic algorithm which is analogous to the Danilewski method 
can be performed using either single-modulus or multiple-modulus residue arithmetic, 
and examples are given for both cases. 

We take advantage of the fact that the integers modulo a prime form a finite field, 
GF(p). Thus, all the theorems relative to matrices and polynomials over a field can 
be utilized in describing the algorithm. Using the modular arithmetic algorithm, 
we reduce a matrix to Frobenius form by means of similarity transformations over 
GF(p). The Frobenius form obtained using modular arithmetic is congruent modulo p 
to the Frobenius form obtained using rational arithmetic. Thus, from the blocks 
along the diagonal of the Frobenius form we obtain (using the Chinese Remainder 
Theorem) the exact multiple-precision coefficients of the characteristic polynomial 
or of its factors over the integers. 

** The nonuniqueness of this form (and hence of the factors) is discussed below. 
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A related algorithm for obtaining the characteristic polynomial of a matrix is 
described by McClellan [1971]. However, no comparisons are made here. 

This paper begins with a description of the reduction over a field 5f to Frobenius 
form. In Chapter B, the single-modulus algorithm for the reduction over GF(p) of 
a matrix to Frobenius form is described, and examples are given. The multiple- 
modulus algorithm is described in Part II, Chapter C. It is shown that different 
moduli may yield different factorizations of the characteristic polynomial and in 
Section 8 a theorem is proved which gives an algorithm for determining which factor- 
izations are not correct factorizations over the integers. Bounds are given in Chapter D 
for the number of moduli required to guarantee that the coefficients can be recon- 
structed using the Chinese Remainder Theorem. Examples which illustrate the 
algorithm are given in Section 12, and numerical results from a computer program are 
in Section 13. 

If p(X) is a polynomial in X with coefficients over a field 5, we denote this by 
p(X) E 5:(X). Also, let M(5) denote the set of matrices with elements over 5, and 

Z(5:(X)) denote the set of matrices with elements over 5:(X). 

2. The Similarity Transformations Over a Field, W. Using the Danilewski 
method we transform an n X n matrix A E M(5:) by means of similarity transforma- 
tions over i, into a matrix F E M(5:), which is in the form (1.1). The elements in 
the last column of the F. are coefficients of the characteristic polynomial for Fi, 

(2.1) f%(X) = (_)ri[- r - b( - -l . . . - -2X2 b() 1X - bra 

where f,(X) E 5:(X). Thus, when I = 1, the characteristic polynomial for F is 

(2.2) f(X) = f(X)= f1(X). 

Since A and F are similar over 5, then f( X) is also the characteristic polynomial for A. 
Thus, by using the Danilewski method, we can compute the characteristic polynomial 
(or a factorization of it) for the matrix A. 

The matrix F is obtained after a finite number of similarity transformations of 
the form 

(2.3) Ak+l = AkJk (k = 0, 1, 2, , M) 

where AO = A and Jk, Ak E M(). It is recommended by both Hansen [1963] and 
Wilkinson [1965, p. 409] that the computation be broken into two stages. During 
the first stage, the matrix A is reduced to Hessenberg form. Wilkinson has shown that 
for this step of the algorithm, single-precision arithmetic is usually sufficient. In the 
second stage, the Hessenberg matrix is further reduced to Frobenius form. It is 
during this stage that we generally need to work in higher precision arithmetic. 
(See, for example, Chartres [1964].) 

Since stability considerations are of no concern in the modified algorithm which 
uses modular arithmetic (all arithmetic is exact), and since we wish to discuss the 
similarities and differences between the algorithm over the rational number field Q 
and the algorithm over GF(p), we shall assume that the computation is not broken 
into two stages.*** We now discuss the similarity transformations. 

* * * Further advantages in combining the two stages are mentioned below. 
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We shall assume here that the algorithm is carried out using elementary similarity 
transformations, since analogous transformations will be used in carrying out the 
modified algorithm. These transformations consist of one of the following three types 
of operations: 

(a) Interchange of rows i and j (or columns i and j); 
(b) Multiplication of row i (or column i) by a nonzero constant K; 
(c) Addition to the ith row of an arbitrary multiple K of row i (and the analogous 

operation on columns). 
Thus the Jk can be assumed to be products of elementary matrices, which are 

obtained from the identity matrix by performing one of the above operations on it. 
We denote these elementary matrices by Ei i, E%(K), and Ei 7(K), respectively. 

In order to save arithmetic, we first reduce the matrix A, to the form 

D1 * 

(2.4) D = D2 

Dji 

where each diagonal block Di is of the form 

(2.5) Di = d~l) 0 ... 0 Yr . 

0 d(2) 0 0 Yri-2 

K0 0 0 ...d rjl- y1 ) 

The coefficients b(') of the characteristic polynomial of Di, 

f%(X) (- 1)ri[Xri -- b. . 
r 

- bj) 2X2 -b() - b ] 

are thus given by 

(2.6) b(t) = ye) 

and 
rim-i 

(2.7) b = y4) TI dk+l,k (i = 2, * * * , r,). 
k=r,-i+ 1 

(These products usually must be computed using double-precision arithmetic to 
reduce error.) Hence, replacing the y~i) by the b and replacing the d"2 i by unity 
completes the computation of the F, of the form (1.1). 

The reduction of Ao to the form (2.4) requires at most n - 1 transformations of 
the form (2.3). Each transformation changes a matrix Ak into a matrix Ak+l in which 
there is an additional column with zeros everywhere except at the pivotal position 
(the (j + 1, j) position). The columns must be annihilated from left to right in order 
not to destroy zeros produced by previous transformations. We note that since each 
transformation produces zeros in all the elements in one column except the first 
subdiagonal element (the pivotal element), then the inverse transformation modifies 



REDUCTION OF A MATRIX TO FROBENIUS FORM. I 891 

only the elements in a single column. We now describe the transformations which 
produce the columns of zeros. 

After the first transformation we have 

Ox ... xI 

xx x. x 

(2.8) Al = JO-AOJo - 0, 

-0 

where 

0 1 -1 l 

(2.9) Jl = ou31, 

'n-2 

Lo u I 
and 

(0) (0) -i 

(2.10) u =-a a2 (i = 1, 3, 4, . 
, n). 

The case in which a pivotal element is equal to zero is discussed in Section 3. 
The (j + 1)st transformation produces 

(2.11) Ai+, = J-1A J, = J-1 J O . JAOl Jo * Ji = [F' 

where F' is an n X (j + 1) submatrix with zeros everywhere except on the first sub- 
diagonal, and where 

U1, + i 

Ii+1 * 0 

Ui+i, i+1 

(2.12) J-1= 0 *.. 0 1 0 ... 0 

Ui+3, i+1 

0 'n-j-2 

Un, i +1 

and 

(2.13) ua,,+l = -a1 +l a522 7 1 (i = 1, * , j + 1, j + 3, i, n). 

Finally, at the (n - 1)st step, if no pivots are equal to zero (if I = 1 in (2.4)), we have 
a matrix in the form (2.4): 
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An-= J.-2An-2 J.-2 = J1-2 ... JO AoJO * Jn-2 

o o *...o X] 

x00 *-* 0 

(2.14) = 0 x 0 0 x , 

000 *-- O x 

LO 0 0 ... x xJ 

where 

* al iU1n-i 

2.15) Jn-2 = In-l 

Un-l1 ,n-1 

.0 *--. 1 I 

and 

(2.16) =i-a n2-7 1-' (i - 1, a?, n - 1). 

To complete the reduction to (1.1) we carry out the operations described in (2.6) 
and (2.7). This corresponds to performing a similarity transformation on the D1, 
producing 

(2.17) F = P- DP 

where 

(d() )-10 

(2.18) P' = (d () d32) 

0 

_(JkJ1 dk+1, k) 

3. The Vanishing Pivot. Clearly, if a pivotal element aji-1) is small in magnitude 
with respect to other elements in the column, then we can expect excessive roundoff 
errors to occur. Thus, by searching through the elements ati (i = j + 2, ... , n) for 
the element of largest magnitude, say ak i, then interchanging rows k and j + 1, we 
can pivot a relatively large element into the (j + 1, j) position before annihilating 
column j. This corresponds to premultiplying Ai-, by the elementary matrix Ek ,+1. 

Then, to complete the similarity transformation, A,1 must be postmultiplied by 
Eki j+,. This interchanges columns k and j + 1. 

We should point out that the reason the search for a nonzero pivot is not made 
among the elements a(,-" (i = 1, , j) is that pre and postmultiplying A_, by 
Eti (i < j + 1) destroys zeros produced by previous transformations. Thus, the 



REDUCTION OF A MATRIX TO FROBENIUS FORM. I 893 

pivotal element may be small with respect to the elements ai i (i = 1, * , j), and 
hence u, =-a - a2 1l) (i = 1 , j) may be quite large. This is the cause of 
the numerical instability in the Danilewski method. 

If a pivot vanishes and no nonzero pivot can be found among the elements aii 
(i = j + 2, *., n), then we partition the matrix A,, into blocks, as follows, and 
apply the algorithm to the (n - j) X (n - j) submatrix H1: 

D[1 

O0 Hj_ 

where D1 is a j X j submatrix which is in Frobenius form except for the elements 
on the first subdiagonal (not yet reduced to unity), and whose characteristic poly- 
nomial is f1(X). If partitioning occurs when applying the algorithm to H1, we obtain 

D1 1 

where the characteristic polynomial of D2 is f2(X). Proceeding in this manner, we 
obtain the block triangular matrix (2.4). If the pivotal element is not zero, but less 
than some threshold value E, say 2' I IA! E, where t is the number of bits in the 
mantissa of the floating-point computer word, then we can replace the pivot by zero 
and partition the matrix as described above. We note that if A is derogatory, then 
this partitioning into a block triangular matrix must occur. 

Other descriptions of the Danilewski method and its variations are given in 
Wilkinson [1965, pp. 405-407], Householder and Bauer [1959], Householder [1964, 
pp. 156-158], and Wayland [1945]. 

B. THE MODIFIED DANILEWSKI METHOD 

4. Introduction. Let a be an integer and p a prime. Then Ial , denotes the unique 
integer which is in the interval [- [p/2], [p/2]] and which is congruent to a modulo p. 
We say that Ial , is the residue of a modulo p. This residue is also called the symmetric 
residue since it is in an interval which is symmetric about zero. Similarly, we can 
apply the notation I I, to matrices or polynomials to indicate that the elements of 
a matrix or the coefficients of a polynomial are reduced modulo p and lie in the 
symmetric interval. The inverse modulo p of an integer a or of a matrix A, when the 
inverses exist, is denoted by a-'(p) or A-'(p), respectively. 

In this section we describe an algorithm which uses similarity transformations 
over GF(p) to reduce an n X n integral matrix A to Frobenius form and obtain exact 
integral factors of the characteristic polynomial of A. The algorithm is based on the 
fact that if A has as its characteristic polynomial 

(4.1) f(X) = det(A -XI) = fl(X) ... f1(X)9 

where fi(X) is an integral polynomial given by 

(4.2) _1(X) (-)riy (X.ri' - b)Xr,'- )- X - b), 
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then we define the characteristic polynomial modulo p of A to be 

(4.3) If(X)IP = Idet(A - XI)Ip, 

where If(X)I, E GF(p)(X). 
Thus, if we compute a bound t , where 

(4.4) d > max lb'I 

and if we choose p so that 

(4.5) p_ 2.0, 

and finally if we compute the f,(X) using modular arithmetic, then 

(4.6) If(X)l = f(X) 

and 

(4.7) If(X)IV = lIlf(X)P If lf(X)LIV = Ifl(X) fl(X)ll. 

Our objective, then, is to reduce a matrix A to the form 

7(p) 
(4.8) -(v r J 

_ ~~~~~F(v)_ 

using similarity transformations over GF(p), where 1' = 1 and 

(4.9) Fi = IFJp (i = 1, 1). 

We now describe a method for computing the F(7) and, hence, also If(X)I ,, using 
modular arithmetic. 

5. The Similarity Transformations over GF(p). If we can reduce A ,I to the 
form 

o o 0 *.. 0 Xn 

1 0 0 ... 0 Xn1 

(5.1) CC= 0 1 0 0 * Xn-2 

O 0 0 ... 0 X2 

o0 0 0 ... 1 X1 

where C = 1S-1(p) IAI, SI,, then A and C are similar over GF(p), and the charac- 
teristic polynomial modulo p of C, and hence of JAI , is 

(5.2) |f(X)I1 I(-1)X(Xn - x ** - xn_1X - xJ)l. 

t Methods for computing f will be discussed in Section i1. 
$ The 2 is necessary because we are using the symmetric residue system. 
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Therefore, since the elements of C are reduced modulo p, we have, from (4.2), 

(5.3) xi = lb") 1P. 

This assumes that no pivots vanish in reducing JAIp to the form (5.1). 
We now consider the problem of reducing JAI,, to the form (5.1). This is accom- 

plished in a finite number of similarity transformations over GF(p), or similarity 
transformations module p, of the form 

(5.4) A (l = I Ak+l v I Jk k Jk 

where 
(p (0) (pW 

(5.5) AO = [asP I Al7 

and 

(5.6) Ak = [a. i() 

Thus, [ak)(P)] is the matrix obtained at the kth step of the reduction of JAI,, to the 
form (5.1) using modulo p arithmetic. In general [afj (P)] , [a M ]. However, in order 
to simplify the notation in the discussion which follows, we omit the superscript p 
on the elements ark) of A(") where it is clear that we are discussing the modular 
arithmetic algorithm and not the algorithm which uses rational arithmetic. 

The transformations in (5.4) consist of the following three types of operations 
which are called elementary operations modulo p: 

(a) Interchange of rows i and j (or columns i and j); 
(b) Multiplication of row i (or column i) by a nonzero constant k, where (k, p) = 1, 

followed by reduction modulo p; 
(c) Addition to the ith row of an arbitrary multiple k, of row j, followed by 

reduction modulo p (or the analogous operation on columns). 
An elementary matrix modulo p is a matrix in 1(GF(p)) obtained from the identity 

matrix by performing one of the above operations on it. We shall denote matrices of 
these kinds by IEjIJ, IE,(K)lI , and IEj,(K)I,, respectively. Thus, we shall let the 
Jkv) be products of elementary matrices modulo p. 

We first reduce the matrix A(") to the form 

W~~ 

(5.7) D D1 
0 

where each diagonal block DVP) is in Frobenius form except for the subdiagonal 
elements which are nonzero but not yet reduced to unity. The reduction of A(") to 
this form requires at most n - 1 steps of the form 

(5.8) Ak21 = | J (p)Ak v) 
Jk , 

where JkP) is a product of elementary matrices modulo p and A ') - I[a?.)]I2' = IA! 
Each transformation changes a matrix A(") into a matrix A (+) in which there is an 
additional column with zeros everywhere except at the pivotal position. 
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At the (j + l)st step of the reduction (if a"I2 j 4 0 (mod p)), the similarity 
transformation over GF(p) produces 

A (P) - |J(P) - l(p) A P) J(P) | 

(5.9) = j J(p) -i(p) ... J(P) (p) A (P) J(P) ... J(P) IP 

= [F'" I *], 
where F' ) is an n X (j + 1) submatrix with zeros everywhere except on the first 
subdiagonal, and where 

(P7) 

'j+1 . 0 

(5.10) 4P) -J (p)= 0 0 1 0 0 

(7,) 
A.i?3,i?1 

(7,) 

and 

(5.11) ?I = I-a(?+ra+2.7-+i(p)I7 (i- = 1, j + 1, j + 3, , n). 
(The case in which a pivot vanishes is discussed in Section 6.) 

Finally, at the (n - 1)st step, if no pivots are congruent to zero (if 1' = 1 in (5.7)), 
we have a matrix in the form (5.7): 

n-= | J nP? (p)An2 Jn-2 |P 

= 
nI JZ(p)- ..P) (p) A v(P) 4P) ... Jn7,13 
0 00 ... Ox 

(5.12) - 0 x 0 ... 0 x , 

0 00 ... O X 

_0 00 ... X X_ 

where 
(7,) 

_ In M n-i 

(5.13) Jn-2 (P) = (7) 

_0 7 0 11 

and 
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(5.14) 
IA)- 

j =-a 
(n2).an2-1(p)n- 

(1 1, * 
IV, 

n - 1). 

To complete the reduction from the form (5.7), where 

r 0o 0 . . . Y' 0 

dat1() 0 0 ... 0 yi- 

(5.15) o(P) = 0 d431) 0 ... 0 Yr. -2 

0 0 0 .. ' Yi 

to the form (4.8), where 

0 0 0 ... 0 bWl 

1 0 0 ... 0 b'(,' 

(5.16) (p)= 0 1 0 * 0 b'2 

0 0 0 1 bI ( )_ 

we compute 

(5.17) lb'")= IYlI) IP 

and 
r, '-1 

(5.18) JbOi()IW = Y' TI djlX (, j 2, * * 
lcr, '-j+1p 

This corresponds to performing a similarity transformation modulo p on &V) 
producing 

(5.19) F(V) = _ I,(P) P 

where 

(d2'") -1(P)? 

(5.20) p(P)l@() = (d2)d2(i)-l(p). 

( IIA ; dk+ 1 0 -1 W 

The following is an algorithm for reducing a matrix to the form (5.7). 
Algorithm I. Reduction of a Matrix A to the Form (5.7) (Single-Modulus Algo- 

rithm). 
Input: An n X n matrix IAl p CE q(GF(p)). 
Output: An n X n matrix D C- M Z(GF(p)) in the form (5.7), 1', r P) (i = ***, 1'). 
(1) Set i +-2, j -1, ibl -1, ' 4-O, jp4- 0. 
(2) If ai,, O(modp),goto(10). 
(3) Set ip a 

- a(p). 
(4) [Produce zeros in column j (premultiply by Ji-1).] For k = ibl, * , n (k 0 i) 
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and t = i, , n, set ak,i - 1ak,l,, ak,t f- I-ak, ipa1,t + ak,~tIV 

(5) If j> n - 2, go to (7). 
(6) [Postmultiply by Jil,.] For k = ibl, By, n, set ak,i+l +- Iak,j+l + 

Et - +2 aj,j ak,ti.p 

(7) For k = ibl + 1, , n, set ak, i+1 aki+1 + ak-, jak,k-1V. 

(8) For k = 1, * * *, n (k $ i), set ak, i -. 
(9) If = n - 1, go to (18); otherwise go to (17). 

(10) If = n - 1,setl'*-l' + 1,r PI --j+ 1 - ibl, ibl-- j + 1, and go to (18). 
(11) [Look for a nonzero pivot.] For k = j + 2, * * , n, test to see if ak, i 4 0 

(mod p). Let ii = mini+25k?n k such that ak i 4 0 (mod p) (if a nonzero element 
exists), and go to (13). 

(12) [No nonzero element can be found in column j.] Go to (16). 
(13) [Interchange rows ii and j + 1.] For k = j, , n, set temp 4-ai, k, aii, k 

aj+, k, a, k +temp. 
(14) [Interchange columns ii and j + 1.] For k = ibl, * , n, set temp +- ak ii, 

ak4-, + ak f+1, ak, i,+1 +- temp. 
(15) Set jp 4- jp + 1, pivot)1 j- i + 1, pivotip)2 +-ii, and go to (3). 
(16) [Increment counter for number of blocks in D(P) and compute block size.] 

SetlP l+-P+1, rf P) + j + I-ibl, ibl+-j +1. 
(17) Set j -j + 1, i'- i + 1, and go to (2). 
(18) Set l -l' + 1, ri) j + 2- ibl, DP -A. 
(19) Exit. 
We note that this algorithm takes advantage of the fact that the superdiagonal 

elements not in one of the DIP) are of no interest. Hence, the transformations ignore 
these elements wherever possible. 

The following is an algorithm for reducing a matrix D(P) in the form (5.7) to F 
in the form (4.8). 

Algorithm II. Reduction of a Matrix D'P' to the Form (4.8) (Single-Modulus 
Algorithm). 

Input: An n X n matrix D(P) E SM(GF(p)), 1', rfI) (i - 1, * , l'). 
Output: An n X n matrix F(P) E M(GF(p)). 
(1) Set i-0, jf- 0. 
(2) Set j +-j + 1, i ( i+rP'. 
(3) If r(P) 0 1, go to (5). 
(4) If i < n, go to (2); otherwise set F < D( and exit. 
(5) [Produce unity subdiagonal elements.] Set k i - 1, mult d-dP'1, d(P1 4- 1. 
(6) Set dk - Imult * dkI . 

(7) If k i - r(P + 1, go to (4). 
(8) Set mult +_ Imult * dk( 1 | p 

*- 1k +- k - 1, go to (6). 
In order to show that 1' = l and that FP = IFj , i = 1, * , /, we first need to 

discuss the vanishing of pivots (the case in which 1' 0 1). 

6. The Vanishing Pivot. If a pivotal element a ' is zero, then a search is made 
among the elements a'?1' (i = j + 2, * , n) for a nonzero element. If one is found, 
say ak i, then rows k and j + 1 are interchanged. This corresponds to premultiplying 
A!P) by the elementary matrix IEk ++11 p. Then, to complete the similarity transforma- 
tion modulo p, A!") must be postmultiplied by IEk ,+ l. This interchanges columns k 
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and j + 1. As in the real arithmetic algorithm, the reason the search for a nonzero 
pivot is not made among the elements a', (i = 1, ,j) or a" i-' (k = + 1, * * ,n) 
is that pre and postmultiplying A," by 1E jj, (i < j + 1) or by jEj+j klp (k < j) 
destroys zeros produced by previous transformations. 

In case a nonzero pivot cannot be found, then we partition the matrix A!," into 
blocks, as follows, and apply the algorithm to the (n - j) X (n - j) submatrix H1p): 

D *1 

_O H( I 

where D(D) is the form (5.15). If partitioning occurs when applying the algorithm to 
H(p) we obtain 

DL * 

D(D)2 

Proceeding in this manner, we obtain the block triangular matrix (5.7). 
An example illustrates the vanishing of pivots in both the rational arithmetic 

algorithm and the modular arithmetic algorithm. 
(6.1) Example. (a) Rational Arithmetic Algorithm. Let 

0 0 1 0 

A - 00 0 

7 l 0 l 

K5 0 0 0_ 

Since the first pivotal element is zero (the (2, 1) element), we must interchange rows 
2 and 3 (and columns 2 and 3). If we let 

1 0 0 0 

0 1 0 0 

0 0 0 1 0o 

0 -5 0 1 
07 01 

we have 

Al = JoI23 AoI23 JO 

1 0 0 0 0 1 0 0 1 0 00 0 1 0 0 

0 1 0 0 7 0 1 - ? 1 7 7 1 1 
7 

0 01 0 00 00 0 010 0 0 0 0 

0- 5 0 -00005 01 -25 -5 -5 
7 7 4 
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The second pivot also vanishes; so, we interchange rows 3 and 4 and columns 3 and 4. 
Thus, 

A2 = J1I34 Al I34 J 

01 ? 429 olo 1 ? ? 1 0l? -249 O o ? 
-7 -7 

25 ~~~~~25 5 5 

L 01-707 5 1 1 0 1 - 70 7 0 -33 0 L 5o 7 1 1 25 

0 0 1 0 0 0 1 0 o-25 0 
49 7 7 ~~~~ ~~497 

_0 0 0 1_ _0 0 0 0 _0 0 0 1_ _0 0 0 0 

Since the third pivot vanishes and there is no nonzero element to pivot into its place, 
we partition the matrix into blocks as shown. Thus, 

O 0 -7 
5 

D1= 7 0 343 and D2=[0]. 
25 

0 -29 0 

Hence 
F7 

1 0 00 0 71 0 0 00 5 

F1= Pj D1P= 0 = 0 7 0 0 3 B 7 0 = 1 0 7 7 25 

0 0 -7 0 -25 0 00 25 0 1 0 
25 4 

and 

F2 = [0] 

Therefore 

det(A - XI) = (X3 - 7X - 5)X. 

(b) Modular Arithmetic Algorithm. We let p = 13. Interchanging rows 2 and 3 
to obtain a nonzero pivot, we obtain 

3)= J31(13)I23 A(13) 2j(l3) 1 

0 0 0 70 1 0 0 1 0 0 0 0 1 0 0 

_ O 1 0 0 7 0 1 1 0 1 0 0 7 -3 1 1 

O 0 1 0 0 0 o i O 0 1 0 1 0 0 0 

.-0 3 0 1- _5 0 0 0- _0 - 3 0 1_ 13 LO0 4 3 3_ 
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The second pivot vanishes, also. Thus 

-13 j (13) -i (13)1 A2(3 J'3 -(1 3)I3 4A 13 I34 J2 113 

-1 0 3 0 ~0 1 0 0 -1 0 -3 0 ~0 0 -4 -4~ 

= O 1 4 0 7 -3 1 1 0 1 -4 0 7 0 5 . 

0 0 1 0 0 4 3 3 0 0 1 0 0 4 0 3 

0 0 0 _ j0 0 0 0 0 0 0 1 13 0 0 0 0_ 

Then, 

D =(13) 7 0 5 and D(13 = [0]. 

I0 4 01 
Hence, 

F (13) = p(13)- l(13)D( 13) P (13) 113 

F1 0 olo 0 -41 F1 0 01 
_ 0 2 0 7 0 5 0 7 0 

0 0 7 0 4 0 0 0 2 13 

I 0 -6 

o0 I 0_i 

and 

13= [] 

Therefore 

Idet(A - XI)113 = 1(X3 + 6X -5)X113. 

We see that, in this example, 1' = I = 2 and F'13' = IF, 1j, for i = 1, 2. 
It is possible for different moduli to yield different factorizations of the charac- 

teristic polynomial. We illustrate this with an example. Since the factorizations 
obtained using the modular arithmetic algorithm are related to the vanishing of 
pivots and the choice of modulus, we exhibit a relationship between the pivots in the 
rational arithmetic algorithm and the pivots in the modular arithmetic algorithm. 

(6.2) Example. Let A be the matrix used in the last example: 

F 0 1 0 

A = 000 
7 1 0 1 

5 0 0 K 

Choosing p = 5, we interchange rows 2 and 3 and columns 2 and 3, obtaining 
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'O 1 0 O- 

(5 ) ___ __ Al = II23 AO I235 =. 
0 0 0 0 

Thus, 

D(5) = L[ 'J , D2= [0] and D(5) = [0]. 
2 0- 

Hence, 

F = IP 5)1(5)DV5P( 5 

= -0 3- _2 0- -0 2- 5 = I 0- 

and 

F25) = F(5) = [0]. 

We see that by using the modulus 5 we have obtained three blocks of orders 2, 1, and 1, 
as opposed to two blocks of orders 3 and 1 obtained using p = 13. 

The following lemma exhibits the relationship between the vanishing of pivots in 
the rational arithmetic algorithm and in the modular arithmetic algorithm. 

(6.3) LEMMA. Let Ak = [a(')] and A*'v = [ak')] each be the kth matrix in a 

sequence of matrices obtained in the reduction of a matrix to Hessenberg form using 
rational arithmetic and arithmetic modulo p, respectively. Then, the statement a(')2 k+ 1=0 

if and only if a,2k+l = (0 < k ? j-1) implies that, for i = j + 2, n, 

(a) a, +lf(aj~li'lajj2)b ... (a(O) )br} 

is an integer and 

I a) i(ai(i))bi I = la( )+i(a('-') )b * ... (a(1)) 
r 

for all j, 1 _ j < n - 2, where 

(i) b1 = 2, bs = 1 + 2bs-l + Ek-l bk and 

(ii) the pivots a;1)j, ... , a21) are the nonzero pivots obtained between step 1 and 
step j of the rational arithmetic algorithm, and r is the number of such pivots, and 

(b) a U) {(aj'-l)i)c1(a(i-2))c . ... (aO) )Cr} 

is an integer and 

I ( i )I (0) 
= Ia r( )C Ila (a)( t(-l))`l . 

(at())l la('i)(a('ll~i~ 21 
al) P 

for i =j + 2, , n, and t = 1, , n, where 

(i) cl = 1, c = b8 + c8 1, and 
(ii) the pivots aj (i , . , a (?' and r are defined as above. 
Proof. A lengthy proof is given in Howell [1972, Appendix A]. 
From the above lemma we have the following: 
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(6.4) THEOREM. The statement a'k+l = 0 if and only ifak2k+l a 
0 (0 < k < 

j- 1) implies that,for 1 < j < n - 2, ail = 0 if and only if either 
(a) ja('2 ,+1K, = Oor 
(b) Ia 2 ,+i(a ~i -a12))b2 . ( = 0, 

where the bi and a('1-) are described in Lemma (6.3). 
Proof. If either 

)2 V~ = 0 or Ia , +i (a i .b.. (al ' )brI = 0, 
then 

la" i),i i(a i( i2-l ) . . .))bj ( ))bjP = 0. 

Since none of (aj2i)-)b%, ... , (a'(?)) b is zero, we must have 

a'i, 0= 0 
Conversely, if a) = 0, then either 

Ia'+2 ,+1IP = 0 or la(') i+,(a 0-1) b (a ) 1b = 0. 

This completes the proof of the theorem. 
From the above theorem we see that if a2'j2 

M 1 is nonzero for some modulus p, 
then the same pivot must be nonzero in the rational arithmetic algorithm, provided 
previous pivots for the two algorithms vanished at the same point. Choosing a large p 
lessens the chance of having 

a ' i1(a .) b . . . )br = C.p, 

where C is an integer not equal to zero. Thus, a large p will increase the probability 
that a+2 ") = 0 if and only if aW",+1 = 0. Clearly, if we have a(2) j+ = 0 if and 
only if a,72) + = 0, then 

(6.5) r= r 

and 

(6.6) 1'= 1. 

Thus, we have shown that if p is a sufficiently large prime number, then the modular 
arithmetic algorithm produces blocks in Frobenius form which are the same order as 
corresponding blocks produced by the rational arithmetic algorithm. 

We are now prepared to state a relationship between the elements of FiP' and 
the corresponding elements of F1. 

(6.7) LEMMA. The statement that ak+l = 0 if and only if a(2'k+l - 0(< k < 
j -1, 1 < j _ n - 2) implies that 

) ( 1) b ( 2)(1)) =-Zkibk (0) k=2bk 
a +,1 (aj ,) (a- - ) 

1 .. (a3 ) (al) 

is an integer, and 

10 
(j) ( 

i 
-1) b l at(i2) )b 

i 
+ b 2 . .= .I bat ) ( 02 ) I 

= 

P 

(i) (j-1) b (j-2) bl+b2 - k bk (O) Zk=2bk 
- Ia%,j+l(ai+l, ) ( . * (a32 )) (a21 ) IV 

where the bk, a I k-y{, and a(k -1 are as described in Lemma (6.3), a''+1 is in F , a (i)+ 
is in F(, r is the number of nonzero pivots between steps 1 and j and 1:k-1 rk + 1 I 

i< n. 
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Proof. See Howell [1972, Appendix B]. 
(6.8) THEOREM. If al", is in Fm and ai'l is in F.", then 

Iai2+ = )| 

where 
mn-i m m 

Zrk+ 1< i? rk and i+ 2 = Erk 
k=l k=1 k=1 

Proof. Using Lemma (6.3) we can show that 

, 1) bl (0) 
Ek=2bkll 

(s-1 ) _ (0 
k=2bkl, (6.9) I(aj2i)b (all bk = I(aj)bj (al () Is 

From Lemma (6.7), 

,i) , 1) bi ,0 k=2bk ( s bi _0 k=2bk (6.10) Iai(a ja7+l) (al~o )) a+ = a (a('(aai2) *- (a0j ) Is 

Since the a are coefficients of factors of the characteristic polynomial (which is 
primitive), then by Gauss' lemma, the a(') + must be integers. See, for example, 
Herstein [1964, pp. 120-121]. Therefore, we can multiply both sides of (6.10) by the 
inverse of (6.9), obtaining 

la(i') lI, = la(')+lp. 

This completes the proof of the theorem. 
From this theorem we have the obvious result: 
(6.11) COROLLARY. For i = 1, .., 1, IFj p = I Fs`' . 
We have thus shown in this section that if p is a sufficiently large prime number, 

then I = 1', ri = rt, and I FJ I, = IF") It 2. 
We have shown in part I that if we choose p sufficiently large, we can carry out 

the Danilewski algorithm over the integers modulo p and obtain the Frobenius form 
which we would have obtained had we used exact rational arithmetic. Methods for 
selecting p are discussed in part II. 
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